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ABSTRACT 

We examine dynamical gauge symmetry hreaking and 

left-right asymmetry in higher dimensional theories by 

taking non-Ahelian gauge theory on a manifold M*xS*, where 

M* and S.2 are a two dimensional Minkowski space and a two 

sphere,~respectively. It is shown that a shift in fermion 

zero point energies due to the compactness of the extra 

dimensional space s* induces dynamical gauge symmetry 

breaking, provided that there exist many heavy fermions. 

With additional Weyl fermions incorporated in M*xS* we 

obtain left-right asymmetric 2 massless fermions in M . The 

effective Lagrangian in M 2 is given. A relationship between 

four dimensional and two dimensional anomalies is also 

established. 
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I. INTRODUCTION 

In this paper we examine the problems of dynamical 

gauge symmetry breaking and left-right asymmetry in higher 

dimensional theories by taking a gauge theory on a manifold 

M*xS* where M2 and S* are a two dimensional Minkowski space 

and a two sphere, respectively. 

Generally speaking, higher dimensional theories unify 

particles with different spins in lower dimensions in one 

multiplet, much similarly to supersymmetric theories in four 

dimensions. In the original Kaluza-Klein approach l-6 one 

starts from higher dimensional Riemannian geometry with the 

Einstein-Hilbert action to unify gravitation (spin 2), gauge 

fields (spin 1) associated with isometry of the extra 

dimensional space, and scalar fields (spin 0) corresponding 

to deformation of the extra dimensional space. It explains 

the origin of gauge invariance to yield a relationship 

between the Newtonian constant of gravitation and gauge 

coupling constant. On the other hand gauge theory in higher 

dimensions7-' unifies gauge fields (spin 1) and scalar 

fields (spin 0). Though the origin of gauge invariance is 

left unexplained, it has been recently shown that a class of 

theories in this category exhibit dynamical gauge symmetry 

breaking by quantum corrections,' which could replace the 

Higgs mechanism in the standard unified theory of 

electroweak and strong interactions. Finally higher 

dimensional super-gravity theories10-12 unify more. With 
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supersymmetry incorporated they unify particles with spin 

2,3/2,1,1/2 and 0. In particular in the ll-dimensional 

SupeKgKaVity, in short, geometry determines everythinq. 

Higher dimensional theories are efficient and 

attractive due to its nature as unified theories, containing 

more symmetry and fewer arbitrary parameters. An 

unsatisfactory point is that so far none of them are 

realistic. There are many problems to be solved to 

construct a realistic theory. We briefly discuss them 

below, simultaneously to explain the necessity of 

introducing at least some of gauge fields as external matter 

fields (sources to the energy momentum tensor T WV) 
rather 

than as a part of a metric guv. 

A. The Einstein equation fOK gravity must admit a 

solution with extra dimensions being compactified. A ground 

state must he a product of four dimensional Minkowski space 

(M4) and a compact extra dimensional space with tiny 

size.6'13 

B. In the reduced lower dimensions, namely in M4, we 

need almost massless f ermions . 

C. Theory must admit left-right asymmetry in M4. 

D. We need SU(3)xSU(2)xU(l) gauge symmetry at 

Weinberg-Salam energies ("300 GeV) . 

All these requirements are apparently trivial, hut 

indeed appear as severe problems in constructing realistic 

higher dimensional theories. 



-4- FERMILAB-Pub-83/63-THY 

Problem A implies that we need matter fields giving 

rise to non-vanishing T 
UV' 

unless extra dimensions are flat. 

Candelas and Weinberg6 have discussed that quantum 

corrections due to quark and lepton loops are responsible 

fOK the COmpaCtifiCatiOn. We take a viewpoint that external 

gauge fields also are responsible fOK that. 

Problems B and C are more serious. In general massless 

fermions in higher dimensions do not yield massless fermions 

in lower dimensions. For a spin l/2 spinor on a compact 

manifold with no other matter fields present, there is a 

simple mathematical theorem 14 that if the scalar curvature R 

is positive definite everywhere, the associated DiKaC 

operator has no zero eigenvalue mode. It means that if an 

extra dimensional space is a positively curved compact 

space, there are no massless fermions at low energies. All 

fermions have masses of O(M), where M is a typical energy 

scale (-1017 GeV) characterizing size of an extra 

dimensional space. 

It is very difficult to get left-right asymmetry, if 

one starts from a system consisting of gravity and spinors 

only. In even dimensions Weyl spinors can he introduced. 

But a higher dimensional spinor of positive (or negative) 

chirality always contains lower dimensional SpinOKS of both 

positive and negative chirality so that one usually ends up 

with left-right Symmetric theories in lower dimensions. 
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Problems B and C are interrelated to each other, and 

can be avoided if there exist external gauge fields in a 

theory. The main purpose of this paper is to show that 

dynamical gauge symmetry breaking induced by quantum effects 

leads to left-right asymmetric massless fermiOn content in 

lower dimensions, thus solving the problems B and C. 

In the previous paper' we showed that gauge theory with 

fermions on M"xS* (M"=n-dimensional Minkowski space) 

exhibits dynamical gauge symmetry breaking by quantum 

effects fOK n=4p+3 (p=O,1,2,...). The analysis was limited 

to odd n because of divergences encountered. To handle with 

fermion problems discussed above, we have to consider even 

dimensional theories. In four dimensions renormalization is 

well defined. For this reason we investigate gauge theory 

on M*xS* as a toy model. It is a four dimensional theory, 

hut reduces at low energies to a two dimensional gauge 

theory. We will see how gauge symmetry breaking is induced 

by quantum corrections due to the compactness of the extra 

dimensional space s*r and how it leads to left-right 

asymmetric massless fermions in M*. As a byproduct we 

establish a relationship between anomalies in four and two 

dimensions, analogous to the 't Hooft condition 15 relating 

anomalies in preons and composite particles. 

We summarize the results in Ref. 9 in Section II. 

Renormalization is carried out in M*xS* in Section III to 

see that gauge symmetry is dynamically broken under some 

conditions. In the following sections we write down the 
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2 effective Lagrangian in M , analyse anomaly equations in 

both M2xS2 2 andM , and show that left-right asymmetry really 

arises at low energies. The final section is devoted to 

summary and discussions. 

II. ZERO-POINT ENERGIES 

As was shown in the previous paper 9 gauge symmetry can 

be dynamically broken on a manifold M"xS* by fermion one 

loop corrections. It is a~ phenomenon caused by a shift in 

fermion zero point energies due to the compactness of the 

extra dimensional space s*, being very similar to the 

Casimir effect16 in electrodynamics. We summarize the 

results of the previous paper in this section to apply them 

to the case n=2 in later sections. 

We first Consider SU(2) gauge theory (Au=\;/*) with 

doublet fermions (Y) on M"xS*. Gravity is neglected. We 

look fOK a gauge field configuration minimizing the 

effective potential Veff[A]. We denote coordinates of M" and 

S* by Xm and polar coordinates ce,+b), respectively. 

Accordingly A 
11 

Splits into Am and (A erA,+,). (AerA@) Play the 

role of effective Higgs fields in the adjoint representation 

in lower dimensions M". Unlike the standard unified theory 

of strong and electroweak interactions there are no 

arbitrary parameters associated with these effective Higgs 

fields, all coupling constants being uniquely fixed by gauge 

invariance. 
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Effective potential is evaluated fOK two typical 

configurations, a pure gauge configuration (Au=O) and a 

monopole configuration (A =Amon ~ u ). The latterl'l is given by 

man 
Am cx,e,9) = 0 .J 

A~onmt,e,w z-G zqt, 

MOtl 
A, tx, 0891 = + -L &)q, 

2%? 
which yields non-vanishing field strengths 

F ;;nCx,e,q) I = -- 
23r= 

&?. 

(2.1) 

Here g, K, and are the SU(2) gauge coupling 

constant, 2 a radius of S , and unit vectors on S* in r-, 8-, 

and $- directions. ,mon solves the IJ equation of motion, 

though classically unstable against small fluctuations. l8 We 

will see that the configuration Afimon can he stabilized by 

quantum effects. 

It has been also argued in Ref. 9 that Au=0 and Au=AFon 

represents two extremes of rotationally symmetric 

2 configurations on S , justifying to particularly pick up the 

two configurations. 

The effective potential is evaluated by first 

integrating f ermion fields Y. This amounts to evaluating 

eigenvalues of a DiKaC operator D (A) r since f ermion 

contributions to the effective potential are summarized by 
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Ve3$ L Al 
F 

= CT,- L iDCA)- r*l?\ 

3 +Tre, \--DrA?+m'). 12 .?a) 

FOK the two special configuration 

-WAC = La’l, t DS’ouZ , 

where [a*] n is the d'Alembertian operator in M" and D 
S2 

(A) 

is the Dirac operator on S 2 given by 

D~(A)=a,~~(~+~~e)-igAef -C 0~{h~f$-ijA1$1, 
(2.4) 

OK in a rotationally symmetric representation by 

D,,(A) = dlD;:W$ 

= &,$(+&-;8A,) t &~(&&j-QA++&? 

c2.s) 

*tnJ 5 rwQ(-$ cq%) prep (-+ es,) . 

Eigenvalues of D 
S* 

(A) are easily found, since 

Ds,CA=~lZ = +a \(~++~I’ + $3 , 

0, CAmon)= = $ (‘it ++:a -c +;t )‘, 
(2.6) 

Here it is the orbital angular momentum on S* expressed in 

terms of 8 and $. D 
S* 

(A=O)* has eigenvalues (j+l/*)*/r* 

(j=1/2,3/2,...) with multiplicity 4(*j+l), whereas 

mon 2 DS2(A ) has eigenvalues j(j+l)/r* (j=O,l,*,...) with 

multiplicity 2 for j=O and 4(2j+l) otherwise. 
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TO evaluate V eff[A] we employ the dimensional 

regularization of 't Hooft and Veltman,19 to find for a 

Dirac fermion 

F v, = Ve.y 1 A=o ; MnxSZ IF 

= - 2 
m/+-l 

s 
cpp I z 4;i Lr:&+m’] 
(2~t)~ 4KVa j=l 

v,” = veil I: A”“- ; M”w S’ JF 

= 2;:::;:-2 r (-y-y& 

% ~I: b”+ j~,2‘?it\)liiat\,+b2J”” 1, 

b=mr. 

In the flat space M n+2 fermion contributions to v eff 
given by 

V," = Vej3t:ABO; M nt2 1 

(2.8 > 

are 

=- 2=-;n r(2,g . 
n 

L2.S) 

The sums over j in Eqs. (2.7) and (2.8) have to be 

first done for w-2 and to be defined for positive n by 

analytic continuation. Detailed calculations are given in 

the Appendix. Results are 

v,’ s - 
2m/2 1 -n 

(Q-2,3) 12.10) mn/.t I 
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n+a 
f,cn,b&--- _ .+ 2 & xcb=-r’)’ hl2 

n+2 
I 
‘0 

-t 2ws ** x(.x2-b=>“‘= 
fpny -1 I 2 b e2-1 - \ ‘I 

f,rn,~~~ b”+l -,. TX 
n+2 

R”” ta;n nw 
0 e =w -1 2 

+2u.cm~ ), 

R =\O?-b2)‘Z + %=)“2 , w = t-+7< 
b=- %= , (OI_W~TL), 

For even n fa(n,b) can be evaluated in a closed form: 

3,c’L.b) = $ b” + & b= - -!- , 
IZO 

f, t2,bl = + b4 -+ & b’ + +. , 

f,C4.bl = $a6 ,,:b4.m&b2+-& , 

f3 C4,b) = $ b” + f? b4 + (2 .\I) 

In our approximation the difference between total 

effective potentials for Ap=O and A =Amon is 
IJ iJ 

tot 
Avon 

wYt# 
= Vq3 I: A”“; bems=‘I - v*,;; LA--Q -, PInItS= 

= TrCF;r)= -s ~pl+-q - VZCm;r\ 
t 

I 
=iiyk- 2~n~:~~n r(-?J& ~~~~~~,m,r~-f,Cn,m;r~~ . 

(2 .\?I 
For odd n the correction term in (2.12) is finite. Since 

&Cn.mr) - f.tn,mr) + $ cmr‘) 
n-2 

>o 

for -1 m>>r , we conclude that gauge symmetry is dynamically 

broken (AVizk<O) for n=4p+3 (p=O,1,2,...), provided that 
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there exists a very heavy fermion. For even n the 

correction term in (2.12) diverges and has to be properly 

renormalized. We discuss this problem in the next section 

for n=*. 

So far we have calculated only fermion loop 

corrections. If one calculate gauge boson loop 

contributions, one would find an imaginary part, since ,mon 

is a saddle point of the action. This imaginary part, 

however, is a fictitious one and should have vanished if 

dressed gauge boson propagators with fermion loops were used 

in the calculations. This implies that loop expansion is 

not very good. 

III. RENORMALIZATION 

To extract physically meaningful finite results, 

effective potential must be renormalized in even dimensions. 

It is not very clear if this can be done consistently for 

general n and m even at the one loop level. In four 

dimensions, namely for n=*, renormalization of gauge theory 

on a curved manifold is well defined. In our approximation 

in which only fermion one loop corrections are evaluated 

renormalization of g, APt 
A (cosmological constant), and 

coupling constants associated with R, R*, R 2 and R 
PV FlVPO * is 

enough to render the theory finite. *' [Here R, R,," and Ruvpc 

are scalar curvature, Ricci tensor, and Riemann tensor, 

respectively.] Arguments simplify for the difference AVz:f' 

in (2.12), since divergences associated with gravity 

(A,R,R* ,...) cancel. 



-12- FERMILAD-Pub-83/63-THY 

Divergent parts in Eqs. (2.9) and (2.10) are given by 

“R u;v’) =-m~’ I 
I a 35’ 

v,F uh’ = r&p+ .‘& 

F cdivr 
V3 = 

P- 
m4 + A.- 22 + ’ 

4-s% 12nz r’ 
--‘3*, 
3oa= r' 

E.? I I 
3 

_I 
r= -\108;r’ Et c3.i) 

where s=2-n. In particular 

r- ldd)V) 
nv 

= VF l&v) 
3 

-vyi"' = 1 \ 1 
a4na r4 E ’ c3.1) 

To carry out renormalization with the monopole 

background field it is most convenient to take the back 

ground field gauge. We introduce a dimensionless coupling 

constant by substituting g in the preceeding formulas by 

E/2 gu r where u is a scale parameter. In the background 

gauge zgz3 w4 20,21 , where A(')=z '12A and g(O),S g,,s/2. !J 3 1-I 4 
If only fermion one loop corrections are taken into account, 

z3 = \ - N* & T$ + 1 
C3.3) 

Z% =: 1 + “‘$ $+T3 + , 

for SU(N) gauge theory, where Tf=1/2 for fermions in the 

fundamental representation and N f is the number of fermion 

species. In this gauge 

+ Tw I=;;’ F’“‘p’ = z, - ; -t-,- F,,Fr” . c3.4) 
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Note that the renormalization constants in (3.3) are 

determined in the flat spacetime M4. 

Now we are ready to show that the renormalization (3.3) 

removes the divergence (3.2): 

Av 
wren) 

= z3 Tw(F;;~)= -t AV Fl 
=n 

1 = 
2aarE r4 

i , ,“::I ; 1 t AvFldiv~ + 4vF lf;nite~ 

c I 
2a=r‘4 + 

- T+4 F 3’12,m;r) + oc&) , Wi) 

fCn,b) = fatn,bl -$,Cn,b) . 

By choosing a scale u=e (Y-1)'2/2fir=.23/r we have 

ken1 I 
Liven = 

I -- 
2a=r+ q.1r4 1‘$C2,rniV). 13.6-l 

Here the coupling constant g should be defined at the energy 

scale v. In passing, 

is a scale invariant quantity in our approximation. f' (2,b) 

is given by 
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f'C2.b) = \;x &$+\I -c2Ck?-.-r?3LR 

-+i Lb=-3r=)w -xcb= -x=)pn\ \b’-r’l ] . c.3.1) 

For large b 

S’C2,bl -&b+& -+o(j-$ 

Numerically, fV=-7.8x10-2, 0.8 1.5x10-2, 1.2x10-l and 

1.9x10-1 for b=mr=O, 0.75, 1, 10, and 100, respectively. 

Unlike higher dimensional theory (n>2), the dependence of f' 

on m is very weak. To have dynamical gauge symmetry 

breaking in four dimensions, namely to get AvL:~")<O, we 

need a large number of heavy fermions. For instance, if 

g2/4n-l/10 and mr"10, we need "30 fermions. Consequences of 

dynamical gauge symmetry breaking are examined in the 

following sections. 

In actual fact all divergences in (3.1) can be removed 

to define a renormalized effective potential for each case. 

Coefficients in counter terms in gauge theory on a curved 

spacetime have been determined in Ref. 20. By using the 

results there and noting that R=2/r2, Ru,RuV=2/r4, and 

R 
uvpu 

RuvPo=4/r4 for M2xS2 , one can confirm that the 

divergences (3.1) are precisely cancelled by the counter 

terms. 
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IV. EFFECTIVE LOW ENERGY THEORY 

Let us assume that there exist both massless and 

massive fermions in M2xS2 , say, one massless fermion and a 

large number of heavy fermions (m>r-') so that gauge 

symmetry is broken by the mechanism discussed in the 

previous section. The aim of this section is to clarify the 

particle content and their interactions at low energies, 

namely in the reduced two dimensional space M2. 

The monopole background field Amon breaks 
lJ SU(2) 

symmetry down to U(1). The associated two dimensional ~(1) 

gauge field am(x) (m=O,l) is related to Au(x,B,(b) by 

A,,, = i- 
4Ficr 

am f-T) 2*;t , 

b,q = Ae:Gn CS,Y) 

C4.l) 

Indeed 

s r%n 8x + LF,., Fr’ 

= $1 5 i 
2n \ cadi 
!y ra *T n -anhI= 3 C4.2) 

where dQ=sinedf3d$. 

Heavy fermions are relevant for inducing dynamical 

gauge symmetry breaking, but contain no light particle 

components in M2. Only the massless fermion in M2xS2, which 

we denote by Y, contains massless particles in M2. 



where D (0) (Amon) 
S2 

is def ined in (2.4). In the rotationally 

symmetric representation it becomes 
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We introduce two dimensional and four dimensional Dirac 

matrices ya and Ta by 

r"= T, 

i 

P= ?\ 

I 

P' = -ip= 

Y' = -;y2 -p = if3@'b, 
(4.3 ) 

*, =fv'=~ 3 r3 = 'P3 aa, 

rs = zr"P'r'r3 2 y1&lcr3 

In this representation the Dirac operator for Y is given by 

D r;&& + &$x +f;>e D;;tA”‘“), 

D = ip,.& + ?xFx -f T Pa 6 Ds~~A""") , C4.4) 

the chirality operator being given by 

rs = &a nu,n+ = b's a &-;f . 14.5) 

It is clear from (4.4) that an eigenstate of D 
S2 

(Amon) 

with an eigenvalue m corresponds to a particle with a mass 

Iml 2. in M Only zero modes of D 
S2 

(Amon) are observable at 

1OW energies. From (2.6) we see that there are two zero 

modes: 
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UI, 

u1-b 

Uar 

u.a : I 

-AALe e-’ ‘9 

=-: 
cm07 \ 
Me* I 
AA 0 e”Q I3 

(4.6) 

Here the first and second subscripts of u.. refer to spin 
11 

and isospin, respectively. "('1 satisfies 

&; a‘*' = - zv3 u*' = f UC*' 
) 

S rj& u*+,+ a'*' = 4% , 

s CIQ u‘+'*u'-' z 0 . 
Note an important relation 

e3,q.gg =-I ) 

c4.1) 

where l/2:,; and grz represent the unbroken U(1) charge and 

2 chirality operator on S , respectively. 

'Y contains two massless fields x and 5 in two 

dimensions: 

4 ci,e ,w I X,WxlU’+‘CCJ,Q) + ~,lx"U'-'t&Q) 

X,1X) tie',,,,, -k &rx1d-' lQ,9) 

C4.9) 

xl and 5, have negative chirality (PS=-11, whereas x2 and 5, 

have positive chirality (I'S=+l). By using (4.7) we find 
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Here the u(1) gauge coupling constant ! is 

Note that x and 5 have opposite charges. 

The effective low energy theory is described by (4.2) 

and (4.10). It is an Abelian gauge theory with two massless 

fermions. 

V. ANOMALY 

In this section we relate four dimensional anomaly to 

two dimensional anomaly. In M2xS2 we have axial current 

anomaly:22 

'J;);/& = - $ TV Fr” &, , 
CS.1) 

&” = ear $ Prs+ , 

where e !J 
a 

is a vierbein. Define a two dimensional axial 

current by 

-g" = 
s I-=dQ 3~~ 

= -7jiPiY*X +~Pfss. (5.2) 

Here we have used (4.3), (4.7) and (4.9). Then Eq. (5.1) 

implies, with (4.1), 
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a,i? = \ r'd& 3,SSm 

= s raZdCL c JZI; p 
8a -- - - 

8-n= s V’dO. Tr FrY E:,v 

CS.3) 

This is exactly what is expected, if one starts from 

the two dimensional theory (4.2) and (4.10). There23 

5 a~c;TiJ~,~~x) = -= e~-(a,a, -add, 
ci ,4) 

caman -a eQmJ. 

The sign is different for X and f , because they have 

opposite charges in U(1). The result is non-trivial. The 

four dimensional equation (5.1) contains all degrees of 

freedom associated with heavy particles in the two 

dimensional language. We kept only massless modes a,,X, and 

f to obtain Eq. (5.31, i.e., the anomaly equation closes in 

the massless sector. 

VI. LEFT-RIGHT ASYMMETRY AND ANOMALY CANCELLATION 

The problem of left-right asymmetry in higher 

dimensional theories lies in the fact that even if one 

starts from a left-right asymmetric theory in higher 

dimensions, one usually ends up with a left-right symmetric 

theory in lower dimensions. One way to get left-right 

asymmetry is to start from topologically non-trivial extra 
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dimensional manifolds like K3.24 Instead, we show that 

left-right asymmetry naturally arises from a topologically 

trivial manifold like S2 as a consequence of dynamical gauge 

symmetry breaking discussed in the previous section. 

Let us take SU(Z)xU(l) gauge theory in M2Gi2 as an 

example. As has been shown earlier, a sufficiently large 

number of su (2) doublet massive fermions induce gauge 

symmetry breaking SU(2)xU(l)~U(l)xU(l). In addition to them 

we introduce massless Weyl fermions such that all 

left-handed Weyl fermions are SU(2) doublets, while all 

right-handed Weyl fermions are SU(2) singlets. Since zero 

modes of D 
S2 

(Amon) exist only for SU(2) doublets, only 

left-handed Weyl fermions survive at low energies. 

We denote SU(2) and U(1) gauge fields by A and B with 
P IJ 

coupling constants g and g'Y. (Y is a 'hypercharge".) 

Corresponding two dimensional U(1) gauge fields are denoted 

by am and bm, respectively. As in Eq. (4.9) a left-handed 

massless fermion has decomposition given by 

\E,WhQ) = f,k~,u~'ce,Q', 

x,w u‘+'ce,'p) UA.1) 

The effective Lagrangian in M2 is given by 

xl 
IIt% 
03f = -TAm (TRY~XR -3L8mQ~) 

-3’Ybm ~~~s,V”X~+~,‘~“‘~L‘) , 
C6,2) 

3-L , -L&. 4mr 8 
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AS promised, the resultant U(l)xU(l) gauge theory is 

left-right asymmetric. 

Since the original four dimensional theory contains 

axial vector gauge couplings, it must satisfy anomaly free 

conditions. In particular, from the <AuAvBh> vertex we have 

Tr, Y =o. C6.3) 

Here the trace is over all left-handed Weyl fermions. 

The effective two dimensional theory also contains 

axial vector gauge couplings. The question arises whether 

it is anomaly free or not. A dangerous vertex here is 

<ambn>. Noting that x(c) is right-(left-)handed, we see 

d L-f =Q. C6.4) 

That is, the condition (6.3) guarantees that the resultant 

two dimensional theory is anomaly free. 

VII. SUMMARY AND DISCUSSIONS 
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In this paper we investigated gauge theory in M2xS2 as 

a toy model of higher dimensional theories. Due to the 

compactness of the extra dimensional space 52 fermion 

zero-point energies are shifted so that the monopole 

configuration Amon in S 2 has lower energy density than the 

pure gauge configuration. Its implication is very large. 

First of all, SU(2) gauge symmetry breaks down to U(1). 

This is a new mechanism for dynamical gauge symmetry 

breaking, and could replace the Higgs mechanism. Secondly, 

dynamically chosen Amon admits two zero modes in a 

left-right asymmetric way so that we have in the reduced two 

dimensions M2 left-right asymmetric massless fermions. 
2 2 We restricted ourselves to M xS . We can extend our 

analysis to any even dimensions MnxS2, assuming that 

divergences can be consistently removed at least at the one 

loop level. Then we would find that for n=2,6,10,... gauge 

symmetry is dynamically broken, provided that there exists a 

very heavy fermions. For nL6, only one very heavy fermion 

(mr>S) is enough to induce gauge symmetry breaking. 

Similar phenomena are expected to happen for M"x sq 

(*3), though we have not examined yet. The non-vanishing 

curvature of the extra dimensional space seems crucial in 

our arguments. It must be also responsible for the fact 

that Amon, namely 11=1 components, and heavy fermions are 

important to derive gauge symmetry breaking,25 though a 

consistent effective field theory for light particles 

exists. 
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We analysed gauge theory on M"XS2. The existence of 

compact extra dimensions must be justified by solving the 

Einstein equation simultaneously. This, with construction 

of more realistic theories, is left to be investigated. 

Finally we note that our results indicate that strong 

gravity with quantum effects can lead to gauge symmetry 

breaking in four dimensions. 
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APPENDIX: DERIVATION OF (2.10) 

The discrete sums in (2.7) and (2.8) are given by 

f,Cn,b‘, = - $ \i’+b=]n’= , 

f3cn,b) = -$b”- “r t~++)\~+\,+b=]“‘=. 
+I 

CA,\) 

f2 and f3 are defined by (A.l) and (A.2) for n<-2, and are 

to be given by analytic continuation for positive n. Let us 

first consider f2: 

s 

934lL 

=- dg P az+ba)n’r 
\-ea-:z - chn (\ + -a;R 

c,+ c: e -\ 
\E 1x=+ La:)- 

CE. 

= \ bn+2 _ de . . . k-L+2 5 G 
-s d3. PLS~~ bZ>“” _ dp & cx2+ khn’= C?. I _ elrrix -2WT-\ - CA.3) 

Contours are given in Fig. 1. 
c:’ = 

The second term vanishes in 

the E+O limit. The third and last terms are complex 

conjugate of each other. The expression (A.3) applies to 

all n. Noting cuts extending from z=?ib, we have for n>-2 

fa(n,b)= g +2\$Xxcb2-” 
1 ntz 
’ ~ 2~ y Ix 

0 eznx -\ 
mi=--bx)n’=s 

b e=‘-l 

CA.41 
The formula for f3 is obtained in a similar manner: 
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SaCnab) = - $ bn - \dp &% ~~‘-&)~W+l)+ba~h/’ 
C, 

= -$bn - 4% 
5 

I -i:t. 
- I _ e”:’ l ** 

5 
*a (\ -t ,-&, 

-\ 

)--a 

ct+c: ;e 

I nt2 
=-h VI+2 +“s. 6% ’ 

s 
=: 

\- elflie '- * 

4 
I 

de 
s 

I 
\,e2Ili3 + e-2n;p (A.5) 

ca 
This time 

in the ~0 

the third term gives a non-vanishing contribution 

limit to cancel the second term: 

x/a 
=- 

J 
:Eip& 

4 b* 

-2niEe’e 
‘= +$b-. 

-R/ 2 

The expression (A.5) is valid for all n. By introducing 

z=+ix and 

R eTw = is CB+~) +b’ =-x1+ ba+;x ~ 

we find for n>-2 

&,cn,b)= --& &“” + \wdx,z (&, nw 
Z”Y 0 e -\ 

- t2xcqy) , 
2 

CA .6) 
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FIGURE CAPTION 

Fig. 1. Integration contours in Eqs. (A.3) and (A.5). 
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